Long Term Behavior of Cable Stayed

نویسندگان

  • Andrea Scotti
  • Heidi Nepf
چکیده

In the design of a structure, one of the most difficult parameter to assess is how the initial condition of a structure will change with time. During its life span, a structure can be subjected to different loads, changes in geometric configuration and even changes in its mechanical properties. Among all factors that can affect the geometrical reconfiguration of a structure (i.e. settlements and overloads) creep is one of the most important given its inevitability and because of its persistent effects (normally estimated as ten thousand days). Due to the effect of creep, a structure tends to amplify its deformation under a given load condition over time, and the final deformation can even reach values five or six time grater than the initial ones. During the design, the fact that deformations grow with time can be a difficult condition especially for highly indeterminate structures like cable stayed bridges where the stresses are related to the geometric configuration of the structure itself. In concrete cable stayed bridges, in fact, the increase in the deformation of the deck and the pylons over time leads to a decrease in the initial tension in the stays with an obvious difficulty in the design phase of the structure. The first chapter of this thesis illustrates and explains one approximate method used to estimate the effect of creep on a concrete structure. The method proposed in this thesis is the "Age-Adjusted Effective Modulus Method". It was chosen among others because it is one of the most commonly used, and because it is highly accessible. In the second chapter, the Age-Adjusted Effective Modulus Method will be used in conjunction with the force method to study non homogeneous, indeterminate structure under the effect of creep. In this chapter a procedure will be introduced that enables the calculation of an initial value of the prestressing force in the stays that elides the effect of creep on tension. In the last chapter, the theory developed in the previous section will be used to study the change of tension in the stays in a cable stayed bridge. The bridge chosen for the application of this theory is one of the proposals for the renewal of the Waldo Hancock Bridge in Maine, USA (M.lEng Project. Alexander Otenti, Andrea Scotti, Richard Uiiruh 111,2004) The theory exposed in this thesis is a very powerful procedure that permits to simplification of the problem of creep in cable-stayed bridges, with easy calculations and with an iterative procedure. Thesis Supervisor: Jerome J. Connor Title: Professor of Civil and Environmental Engineering 1 CREEP BEHAVIOUR OF CONCRETE 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Current State of Internal Force and the Optimization of Cable Force for an Existing Long-span Pre-Stressed Concrete (PC) Cable-stayed Bridge

Due to the influence of load, fatigue, corrosion, natural material aging and other long-term adverse factors, the state of the internal force of a cable-stayed bridge will be changed. These long-term effects can result in the bridge not meeting specified functional requirements, and potentially resulting in structural failure. This investigation focuses on the parameter identification of a gird...

متن کامل

DESIGN OPTIMIZATION OF CABLE-STAYED BRIDGES USING MOMENTUM SEARCH ALGORITHM

Design optimization of cable-stayed bridges is a challenging optimization problem because a large number of variables is usually involved in the optimization process. For these structures the design variables are cross-sectional areas of the cables. In this study, an efficient metaheuristic algorithm namely, momentum search algorithm (MSA) is used to optimize the design of cable-stayed bridges....

متن کامل

Static Instability Analysis of Long-Span Cable-Stayed Bridges with Carbon Fiber Composite Cable under Wind Load

In this paper, a three dimensional analysis is performed to investigate the static instability of long-span cable-stayed bridges due to wind loading. Cables made of carbon fiber composite cable (CFCC) are studied. Nonlinearity due to displacement-dependent wind loading is considered. A 1400meter cable-stayed bridge model is used to investigate the static behavior of bridges with both steel and ...

متن کامل

Elastic-plastic Seismic Behavior of Long Span Cable-stayed Bridges

This paper investigates the elastic-plastic seismic behavior of long span cable-stayed steel bridges through the plane finite-element model. Both geometric and material nonlinearities are involved in the analysis. The geometric nonlinearities come from the stay cable sag effect, axial force-bending moment interaction, and large displacements. Material nonlinearity arises when the stiffening ste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014